By Topic

Security enhancement using an optimal switching power flow

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Schnyder, G. ; Swiss Federal Inst. of Technol., Zurich, Switzerland ; Glavitsch, H.

The method presented allows the determination of the optimal and n-1 secure power system state by switching operations. A linear switching model is applied in an active way to model the control actions and in a more passive way to set up contingency constraints. Using the switching model in a dual role permits the integration of contingencies and control actions into one optimization algorithm. Thus, with exactly one optimization step the power system can be improved considering various security levels. A comparison is made between preventive conservative and postcontingency rescheduling. The main difference lies in the time-dependent performance of the topology changes in establishing a normal undisturbed system state if any contingency occurs. The preventive way of rescheduling has the advantage that there are no limit violations produced by a contingency. In postcontingency rescheduling short-term overloads are tolerated. This system state has the advantage of lower production costs. The performance of the algorithm is shown in a test case

Published in:

Power Systems, IEEE Transactions on  (Volume:5 ,  Issue: 2 )