By Topic

Robust Stabilization of Uncertain Fuzzy-Time-Delay Systems Using Sliding-Mode-Control Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Han Ho Choi ; Dept. of Electr. Eng., Dongguk Univ., Seoul, South Korea

Based on sliding-mode-control theory, we develop a fuzzy controller design method for a class of uncertain time-delay systems that can be represented by Takagi-Sugeno (T-S) fuzzy models. In terms of linear-matrix inequalities (LMIs), we derive a sufficient condition for the existence of stabilizing sliding-mode controllers. We show that the sliding-surface parameter matrix can be characterized in terms of the solution of the LMI-existence condition. Our LMI condition does not require stabilization of the pair of the state and input matrices. Thus, our method can be applied to a broad class of uncertain systems. We also give an LMI-based algorithm to design a switching feedback-control strategy so that a stable sliding motion is induced in finite time. Finally, we give a numerical-design example to show that our method can be better than the previous results.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:18 ,  Issue: 5 )