By Topic

Space-Time Bayesian Compressed Spectrum Sensing for Wideband Cognitive Radio Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)

Wideband spectrum sensing in cognitive radio networks remains an open challenge due to wideband spectrum acquisition implementation. Compressed spectrum sensing provides a powerful approach to acquire wideband signals. We purpose a probabilistic Space-time Bayesian Compressed Spectrum Sensing (ST-BCSS) to combat the noise in wideband compressed spectrum sensing. We present an informative hierarchical prior probabilistic model to recover the compressed spectrum by exploiting the temporal and spatial prior information. These priori information endows the robustness of spectrum sensing subject to noise and low sampling rate. We present a probabilistic framework to address how to represent, convey and fuse multi-prior information to improve the local compressed spectrum reconstruction. Numerical simulation results demonstrate that the ST-BCSS algorithm improves the performance of compressed spectrum sensing under low sampling rate and low Signal Noise Ratio (SNR), compared with the traditional Basis Pursuit and Orthogonal Matching Pursuit algorithms. A correlation based algorithm for the detection of reconstruction failure due to non-sparse spectrum is also proposed and demonstrated using numerical simulations.

Published in:

New Frontiers in Dynamic Spectrum, 2010 IEEE Symposium on

Date of Conference:

6-9 April 2010