Scheduled System Maintenance:
Some services will be unavailable Sunday, March 29th through Monday, March 30th. We apologize for the inconvenience.
By Topic

MCMC-based feature-guided particle filtering for tracking moving objects from a moving platform

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chung-Ching Lin ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Wolf, W.

This paper proposes a Markov Chain Monte Carlo based feature-guided particle filtering algorithm to track moving objects observed from a camera on a moving platform. Sudden camera or object motion is the typical problem that causes tracking performance sharply deteriorate. It is inadequate to use classical recursive Bayesian estimation to track moving objects observed by a rapid-moving and unstable camera since the method could not resolve the sudden motion problem. We develop a robust and unconstrained tracking algorithm to overcome the tracking failure issues. Markov Chain Monte Carlo (MCMC) technique is adopted to efficiently realize the feature-guided particle filter. Experiment results show that the method demonstrates robust tracking performance without assistance of foreground segmentation and performs accurately in severe tracking environment.

Published in:

Computer Vision Workshops (ICCV Workshops), 2009 IEEE 12th International Conference on

Date of Conference:

Sept. 27 2009-Oct. 4 2009