By Topic

Optimization of an on-chip active cooling system based on thin-film thermoelectric coolers

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Jieyi Long ; Dept. of EECS, Northwestern Univ., Evaston, IL 60208, USA ; Seda Ogrenci Memik ; Matthew Grayson

In this paper, we explore the design and optimization of an on-chip active cooling system based on thin-film thermoelectric coolers (TEC). We start our investigation by establishing the compact thermal model for the chip package with integrated thin-film TEC devices. We observe that deploying an excessive number of TEC devices and/or providing the TEC devices with an improper supply current might adversely result in the overheating of the chip, rendering the cooling system ineffective. A large amount of supply current could even cause the thermal runaway of the system. Motivated by this observation, we formulate the deployment of the integrated TEC devices and their supply current setting as a system-level design problem. We propose a greedy algorithm to determine the deployment of TEC devices and a convex programming based scheme for setting the supply current levels. Leveraging the theory of inverse-positive matrix, we provide an optimality condition for the current setting algorithm. We have tested our algorithms on various benchmarks. We observe that our algorithms are able to determine the proper deployment and supply current level of the TEC devices which reduces the temperatures of the hot spots by as much as 7.5??C compared to the cases without integrated TEC devices.

Published in:

2010 Design, Automation & Test in Europe Conference & Exhibition (DATE 2010)

Date of Conference:

8-12 March 2010