By Topic

A reconfigurable multiprocessor architecture for a reliable face recognition implementation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Tumeo, A. ; DEI, Politec. di Milano, Milan, Italy ; Regazzoni, F. ; Palermo, G. ; Ferrandi, F.
more authors

Face Recognition techniques are solutions used to quickly screen a huge number of persons without being intrusive in open environments or to substitute id cards in companies or research institutes. There are several reasons that require to systems implementing these techniques to be reliable. This paper presents the design of a reliable face recognition system implemented on Field Programmable Gate Array (FPGA). The proposed implementation uses the concepts of multiprocessor architecture, parallel software and dynamic reconfiguration to satisfy the requirement of a reliable system. The target multiprocessor architecture is extended to support the dynamic reconfiguration of the processing unit to provide reliability to processors fault. The experimental results show that, due to the multiprocessor architecture, the parallel face recognition algorithm can achieve a speed up of 63% with respect to the sequential version. Results regarding the overhead in maintaining a reliable architecture are also shown.

Published in:

Design, Automation & Test in Europe Conference & Exhibition (DATE), 2010

Date of Conference:

8-12 March 2010