By Topic

An abstraction-guided simulation approach using Markov models for microprocessor verification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Tao Zhang ; Key Lab. of Comput. Syst. & Archit., Chinese Acad. of Sci., Beijing, China ; Tao Lv ; Xiaowei Li

In order to combine the power of simulation-based and formal techniques, semi-formal methods have been widely explored. Among these methods, abstraction-guided simulation is a quite promising one. In this paper, we propose an abstraction-guided simulation approach aiming to cover hard-to-reach states in functional verification of microprocessors. A Markov model is constructed utilizing the high level functional specification, i.e. ISA. Such model integrates vector correlations. Furthermore, several strategies utilizing abstraction information are proposed as an effective guidance to the test generation. Experimental results on two complex microprocessors show that our approach is more efficient in covering hard-to-reach states than similar methods. Comparing with some work with other intelligent engines, our approach could guarantee higher hit ratio of target states without efficiency loss.

Published in:

Design, Automation & Test in Europe Conference & Exhibition (DATE), 2010

Date of Conference:

8-12 March 2010