Cart (Loading....) | Create Account
Close category search window
 

An error-correcting unordered code and hardware support for robust asynchronous global communication

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Agyekum, M.Y. ; Dept. of Comput. Sci., Columbia Univ., New York, NY, USA ; Nowick, S.M.

A new delay-insensitive data encoding scheme for global asynchronous communication is introduced. The goal of this work is to combine the timing-robustness of delay-insensitive (i.e., unordered) codes with the fault-tolerance of error-correcting codes. The proposed error-correcting unordered (ECU) code, called Zero-Sum, can safely accommodate arbitrary skew in arrival times of individual bits in a packet, while simultaneously providing 1-bit correction and 2-bit detection. A systematic code is targeted, where data can be directly extracted from the codewords. A basic method for generating the code is presented, as well as detailed designs for the supporting hardware blocks. An outline of the system micro-architecture and its operating protocol is also given. When compared to the best previous systematic ECU code, the new code provides a 5.74 to 18.18% reduction in transition power for most field sizes, with better or comparable coding efficiency. Pre-layout technology-mapped implementations of the supporting hardware (encoder, completion detector, error-corrector) were synthesized with the UC Berkeley ABC tool using a 90nm industrial standard cell library. Results indicate that they have moderate area and delay overheads, while the best non-systematic ECU codes have 3.82 to 10.44x greater area for larger field sizes.

Published in:

Design, Automation & Test in Europe Conference & Exhibition (DATE), 2010

Date of Conference:

8-12 March 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.