Cart (Loading....) | Create Account
Close category search window

pSHS: A scalable parallel software implementation of Montgomery multiplication for multicore systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhimin Chen ; Dept. of Electr. & Comput. Eng., Virginia Tech, Blacksburg, VA, USA ; Schaumont, P.

Parallel programming techniques have become one of the great challenges in the transition from single-core to multicore architectures. In this paper, we investigate the parallelization of the Montgomery multiplication, a very common and time-consuming primitive in public-key cryptography. A scalable parallel programming scheme, called pSHS, is presented to map the Montgomery multiplication to a general multicore architecture. The pSHS scheme offers a considerable speedup. Based on 2-, 4-, and 8-core systems, the speedup of a parallelized 2048-bit Montgomery multiplication is 1.98, 3.74, and 6.53, respectively. pSHS delivers stable performance, high portability, high throughput and low latency over different multicore systems. These make pSHS a good candidate for public-key software implementations, including RSA, DSA, and ECC, based on general multicore platforms. We present a detailed analysis of pSHS, and verify it on dual-core, quad-core and eight-core prototypes.

Published in:

Design, Automation & Test in Europe Conference & Exhibition (DATE), 2010

Date of Conference:

8-12 March 2010

Need Help?

IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.