Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Interstitial thermal ablation with a fast rotating dual-mode transducer

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Bouchoux, G. ; Inst. Nat. de la Sante et de la Rech. Medicale (Inserm), Lyon, France ; Owen, N. ; Chavrier, F. ; Berriet, R.
more authors

Interstitial ultrasound applicators can be a minimally invasive alternative for treating targets that are unresectable or are inaccessible by extracorporeal methods. Dualmode transducers for ultrasound imaging and therapy were developed to address the constraints of a miniaturized applicator and real-time treatment monitoring. We propose an original treatment strategy that combines ultrasound imaging and therapy using a dual-mode transducer rotating at 8 revolutions per second. Real-time B-mode imaging was interrupted to emit high-intensity ultrasound over a selected therapy aperture. A full 360?? image was taken every 8th rotation to image the therapy aperture. Numerical simulations were performed to study the effect of rotation on tissue heating, and to study the effect of the treatment sequence on transducer temperature. With the time-averaged transducer surface intensity held at 12 W/ cm2 to maintain transducer temperature below 66??C, higher field intensities and deeper lesions were produced by narrower therapy apertures. A prototype system was built and tested using in vitro samples of porcine liver. Lesions up to 8 mm were produced using a time-averaged transducer surface intensity of 12 W/cm2 applied for a period of 240 s over a therapy aperture of 40??. Apparent strain imaging of the therapy aperture improved the contrast between treated and spared tissues, which could not be differentiated on B-mode images. With appropriate limits on the transducer output, real-time imaging and deep thermal ablation are feasible and sustainable using a rotating dual-mode transducer.

Published in:

Ultrasonics, Ferroelectrics, and Frequency Control, IEEE Transactions on  (Volume:57 ,  Issue: 5 )