Cart (Loading....) | Create Account
Close category search window
 

Implementation of a Fault-Diagnosis Algorithm for Induction Machines Based on Advanced Digital-Signal-Processing Techniques

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Seungdeog Choi ; Dept. of Electr. & Comput. Eng., Texas A&M Univ., College Station, TX, USA ; Akin, B. ; Rahimian, M.M. ; Toliyat, H.A.

In this paper, a complete cross-correlation-based fault-diagnostic method is proposed for real-time digital-signal-processor (DSP) applications that cover both the fault-monitoring and decision-making stages. In practice, a motor driven by an inverter or utility line is run at various operating points where the frequency, amplitude, and phase of the fault signatures vary unexpectedly. These changes are considered to be one of the common factors that yield erroneous fault tracking and unstable fault detection. In this paper, the proposed algorithms deal with the ambiguities of line-current noise or sensor-resolution errors and operating-point-dependent threshold issues. It is theoretically and experimentally verified that a motor fault can be continuously tracked when the sensor errors are within a limited range through the adaptively determined threshold definition of noise conditions. The offline experiments are performed via Matlab using actual line-current data obtained by a data-acquisition system. These results are verified on a DSP-based motor drive in real time where drive sensors and a digital signal processor are employed both for motor-control and fault-diagnostic purposes.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:58 ,  Issue: 3 )

Date of Publication:

March 2011

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.