By Topic

An Integrated Speed- and Accuracy-Enhanced CMOS Current Sensor With Dynamically Biased Shunt Feedback for Current-Mode Buck Regulators

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Mengmeng Du ; Dept. of Electr. Eng., Univ. of Texas at Dallas, Richardson, TX, USA ; Hoi Lee

This paper presents a new compact on-chip current-sensing circuit to enable current-mode buck regulators operating at a high switching frequency for reducing the inductor profile. A dynamically biased shunt feedback technique is developed in the proposed current sensor to push nondominant poles to higher frequencies, thereby improving the speed and stability of the current sensor under a wide range of load currents. A feedforward gain stage in the proposed current sensor also increases the dc loop-gain magnitude and thus enhances the accuracy of the current sensing. A current-mode buck regulator with the proposed current sensor has been implemented in a standard 0.35-μm CMOS process. Measurement results show that the proposed current sensor can achieve 95% sensing accuracy and <;; 50-ns settling time. The buck converter can thus operate properly at the switching frequency of 2.5 MHz with the duty cycle down to 0.3. The output ripple voltage of the regulator is <;; 43 mV with a 4.7-μF off-chip capacitor and a 2.2-μH off-chip inductor. The power efficiency of the buck regulator achieves above 80% over the load current ranging from 25 to 500 mA.

Published in:

Circuits and Systems I: Regular Papers, IEEE Transactions on  (Volume:57 ,  Issue: 10 )