By Topic

Time-Domain Blind Separation of Audio Sources on the Basis of a Complete ICA Decomposition of an Observation Space

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zbyněk Koldovsky ; Institute of Information Technology and Electronics, Czech Republic ; Petr Tichavsky

Time-domain algorithms for blind separation of audio sources can be classified as being based either on a partial or complete decomposition of an observation space. The decomposition, especially the complete one, is mostly done under a constraint to reduce the computational burden. However, this constraint potentially restricts the performance. The authors propose a novel time-domain algorithm that is based on a complete unconstrained decomposition of the observation space. The observation space may be defined in a general way, which allows application of long separating filters, although its dimension is low. The decomposition is done by an appropriate independent component analysis (ICA) algorithm giving independent components that are grouped into clusters corresponding to the original sources. Components of the clusters are combined by a reconstruction procedure after estimating microphone responses of the original sources. The authors demonstrate by experiments that the method works effectively with short data, compared to other methods.

Published in:

IEEE Transactions on Audio, Speech, and Language Processing  (Volume:19 ,  Issue: 2 )