By Topic

Wound Bleeding Control by Low Temperature Air Plasma

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Spencer P. Kuo ; Department of Electrical and Computer Engineering, Polytechnic Institute of New York University , Brooklyn, NY, USA ; Cheng-Yen Chen ; Chuan-Shun Lin ; Shu-Hsing Chiang

A portable low temperature air plasma torch was used to control bleeding from wounds. As animal models, two pigs were used in the tests: one for the plasma treatment, and the other as the untreated control. Plasma effects on the bleeding times of three types of wounds (straight cut and cross cut in the ham area, and a hole in the saphenous vein of an ear) were examined. The results were that this plasma torch shortened the bleeding time for these three types of wounds from about 3 min to 18 s, about 4 min to 13 s, and 88 s to 15 s, respectively. Emission spectroscopy of the torch was performed to explore the reactive species carried by the plasma effluent of the torch. The results show that this torch carries abundant reactive atomic oxygen (RAO), which is the dominant reactive species in the plasma effluent. RAO can activate erythrocyte-platelet interactions to enhance blood coagulation for plug formation. The present tests indicate that RAO can also penetrate through the skin surrounding the wound to block capillary blood flow to the wound.

Published in:

IEEE Transactions on Plasma Science  (Volume:38 ,  Issue: 8 )