Cart (Loading....) | Create Account
Close category search window
 

Observation of electron trapping along scratches on SiO2 surface in mirror electron microscope images under ultraviolet light irradiation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hasegawa, Masaki ; Central Research Laboratory, Hitachi. Ltd., 1-280, Higashi-koigakubo, Kokubunji, Tokyo 185-8601, Japan ; Shimakura, Tomokazu

Your organization might have access to this article on the publisher's site. To check, click on this link:http://dx.doi.org/+10.1063/1.3383046 

Surface charge distribution change caused by electrons trapped at defects of a SiO2 surface has been observed by using a mirror electron microscope (MEM) under monochromatized ultraviolet (UV) light irradiation. Scratches on the SiO2 surface on a silicon wafer were formed by mechanically polishing to create spatially distributed defects on the SiO2 surface. Exposure of the SiO2 surface by UV light with energy above 4.25 eV, which is the threshold energy for internal photoemission from silicon to SiO2, produced significant change in the contrast in the MEM images. This contrast change is mainly due to negative charging by the photoexcited electrons trapped at the defects along the scratches. The negative charging changes the curvature of the electrostatic equipotential surface above the scratches from a concave shape to a convex shape; as a result, their contrast in the MEM image becomes reversed. The surface density of the trapped electrons at a typical scratch was roughly estimated to be 1010 cm-2. This result of analysis of the contrast change shows that the MEM can be used for spatially resolved and spectroscopic characterizations of defects relating charge trapping in insulator films in conjunction with a charge-injection technique such as UV irradiation.

Published in:

Journal of Applied Physics  (Volume:107 ,  Issue: 8 )

Date of Publication:

Apr 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.