By Topic

Petri Net Decomposition Approach to Optimization of Route Planning Problems for AGV Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Tatsushi Nishi ; Division of Mathematical Science for Social Systems at Graduate School of Engineering Science, Osaka University, Toyonaka city, Japan ; Ryota Maeno

In this paper, we propose a Petri Net (PN) decomposition approach to the optimization of route planning problems for automated guided vehicles (AGVs) in semiconductor fabrication bays. An augmented PN is developed to model the concurrent dynamics for multiple AGVs. The route planning problem to minimize the total transportation time is formulated as an optimal transition firing sequence problem for the PN. The PN is decomposed into several subnets such that the subnets are made independent by removing the original shared places and creating its own set of resource places for each subnet with the appropriate connections. The partial solution derived at each subnet is not usually making a feasible solution for the entire PN. The penalty function algorithm is used to integrate the solutions derived at the decomposed subnets. The optimal solution for each subnet is repeatedly generated by using the shortest-path algorithm in polynomial time with a penalty function embedded in the objective function. The effectiveness of the proposed method is demonstrated for a practical-sized route planning problem in semiconductor fabrication bay from computational experiments.

Published in:

IEEE Transactions on Automation Science and Engineering  (Volume:7 ,  Issue: 3 )