Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 12:00 PM ET (12:00 - 16:00 UTC). We apologize for the inconvenience.
By Topic

Ultra-Wideband Bandpass Filter With Improved Upper Stopband Performance Using Defected Ground Structure

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Jae-Kwan Lee ; Dept. of Radio Sci. & Eng., Korea Univ., Seoul, South Korea ; Young-Sik Kim

A novel ultra-wideband (UWB) bandpass filter (BPF) with improved upper stopband performance using a defected ground structure (DGS) is presented in this letter. The proposed BPF is composed of seven DGSs that are positioned under the input and output microstrip line and coupled double step impedance resonator (CDSIR). By using CDSIR and open loop defected ground structure (OLDGS), we can achieve UWB BPF characteristics, and by using the conventional CDGSs under the input and output microstrip line, we can improve the upper stopband performance. Simulated and measured results are found in good agreement with each other, showing a wide passband from 3.4 to 10.9 GHz, minimum insertion loss of 0.61 dB at 7.02 GHz, a group delay variation of less than 0.4 ns in the operating band, and a wide upper stopband with more than 30 dB attenuation up to 20 GHz. In addition, the proposed UWB BPF has a compact size (0.27??g ~ 0.29??g , ??g : guided wavelength at the central frequency of 6.85 GHz).

Published in:

Microwave and Wireless Components Letters, IEEE  (Volume:20 ,  Issue: 6 )