By Topic

Rock Recognition From MWD Data: A Comparative Study of Boosting, Neural Networks, and Fuzzy Logic

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Ali Kadkhodaie-Ilkhchi ; Rio Tinto Centre for Mine Automation, Australian Centre for Field Robotics , University of Sydney, Sydney, Australia ; Sildomar T. Monteiro ; Fabio Ramos ; Peter Hatherly

Measurement-while-drilling (MWD) data recorded from drill rigs can provide a valuable estimation of the type and strength of the rocks being drilled. Typical MWD sensors include bit pressure, rotation pressure, pull-down pressure, pull-down rate, and head speed. This letter presents an empirical comparison of the statistical performance, ease of implementation, and computational efficiency associated with three machine-learning techniques. A recently proposed method, boosting, is compared with two well-established methods, neural networks and fuzzy logic, used as benchmarks. MWD data were acquired from blast holes at an iron ore mine in Western Australia. The boreholes intersected a number of rock types including shale, iron ore, and banded iron formation. Boosting and neural networks presented the best performance overall. However, from the viewpoint of implementation simplicity and computational load, boosting outperformed the other two methods.

Published in:

IEEE Geoscience and Remote Sensing Letters  (Volume:7 ,  Issue: 4 )