By Topic

Scanned Compound Document Encoding Using Multiscale Recurrent Patterns

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Nelson C. Francisco ; Instituto de Telecomunicações, Portugal and PEE/COPPE, Univ. Fed. Rio de Janeiro, Rio de Janeiro, Brazil ; Nuno M. M. Rodrigues ; Eduardo A. B. da Silva ; Murilo Bresciani de Carvalho
more authors

In this paper, we propose a new encoder for scanned compound documents, based upon a recently introduced coding paradigm called multidimensional multiscale parser (MMP). MMP uses approximate pattern matching, with adaptive multiscale dictionaries that contain concatenations of scaled versions of previously encoded image blocks. These features give MMP the ability to adjust to the input image's characteristics, resulting in high coding efficiencies for a wide range of image types. This versatility makes MMP a good candidate for compound digital document encoding. The proposed algorithm first classifies the image blocks as smooth (texture) and nonsmooth (text and graphics). Smooth and nonsmooth blocks are then compressed using different MMP-based encoders, adapted for encoding either type of blocks. The adaptive use of these two types of encoders resulted in performance gains over the original MMP algorithm, further increasing the performance advantage over the current state-of-the-art image encoders for scanned compound images, without compromising the performance for other image types.

Published in:

IEEE Transactions on Image Processing  (Volume:19 ,  Issue: 10 )