Cart (Loading....) | Create Account
Close category search window
 

Two-Channel Linear Phase FIR QMF Bank Minimax Design via Global Nonconvex Optimization Programming

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)
Ho, C.Y.-F. ; Sch. of Math. Sci., Queen Mary, Univ. of London, London, UK ; Ling, B.W.-K. ; Benmesbah, L. ; Kok, T.C.-W.
more authors

In this correspondence, a two-channel linear phase finite-impulse-response (FIR) quadrature mirror filter (QMF) bank minimax design problem is formulated as a nonconvex optimization problem so that a weighted sum of the maximum amplitude distortion of the filter bank, the maximum passband ripple magnitude and the maximum stopband ripple magnitude of the prototype filter is minimized subject to specifications on these performances. A modified filled function method is proposed for finding the global minimum of the nonconvex optimization problem. Computer numerical simulations show that our proposed design method is efficient and effective.

Published in:

Signal Processing, IEEE Transactions on  (Volume:58 ,  Issue: 8 )

Date of Publication:

Aug. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.