Scheduled System Maintenance:
On Monday, April 27th, IEEE Xplore will undergo scheduled maintenance from 1:00 PM - 3:00 PM ET (17:00 - 19:00 UTC). No interruption in service is anticipated.
By Topic

Processing of Signals Recorded Through Smart Devices: Sleep-Quality Assessment

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bianchi, A.M. ; Dept. of Biomed. Eng., Politec. di Milano, Milan, Italy ; Mendez, M.O. ; Cerutti, S.

In this paper, we discuss the possibility of performing a sleep evaluation from signals, which are not usually used for this purpose. In particular, we take into consideration the heart rate variability (HRV) and respiratory signals for automatic sleep staging, arousals detection, and apnea recognition. This is particularly useful for wearable or textile devices that could be employed for home monitoring of sleep. The HRV and the respiration were analyzed in the frequency domain, and the statistics on the spectral and cross-spectral parameters put into evidence the possibility of a sleep evaluation on their basis. Comparison with traditional polysomnography (PSG) revealed a classification accuracy of 89.9% in rapid eye movement (REM) non-REM sleep separation and an accuracy of 88% for sleep apnea detection. Additional information can be achieved from the number of microarousals recognized in correspondence of typical modifications in the HRV signal. The obtained results support the idea of automatic sleep evaluation and monitoring through signals that are not traditionally used in clinical PSG, but can be easily recorded at home through wearable devices (for example, a sensorized T-shirt) or systems integrated into the environment (a sensorized bed). This is a first step for the development of systems for sleep screening on large populations that can constitute a complement for the traditional clinical evaluation.

Published in:

Information Technology in Biomedicine, IEEE Transactions on  (Volume:14 ,  Issue: 3 )