By Topic

Quantitative Microwave Imaging for Breast Cancer Detection Using a Planar 2.45 GHz System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Henriksson, T. ; Dept. de Rech. en Electromagn., Nat. de la Rech. Sci., Gif-sur-Yvette, France ; Joachimowicz, N. ; Conessa, C. ; Bolomey, J.-C.

Microwave imaging is recognized as a potential candidate for biomedical applications, such as breast tumor detection. In this context, the capability of a planar microwave camera to produce quantitative imaging of high-contrast inhomogeneous objects is investigated. The image reconstruction is achieved by means of an iterative Newton-Kantorovich algorithm. Promising numerical simulation results indicate that the planar geometry is suitable for quantitative imaging, as long as the signal-to-noise ratio is higher than 40 dB. Such a requirement is satisfied with the camera due to appropriate data averaging. Furthermore, different calibration techniques are discussed, aiming to reduce the model error, which results from the limitations of the numerical model involved in the reconstruction to accurately reproduce the experimental setup. The experimental work also includes the development of a phantom using a new fluid tissue equivalent mixture based on Triton X-100. As a final result, this paper shows the first reconstructed quantitative images of a high-contrast inhomogeneous 2-D object obtained by using experimental data from the camera.

Published in:

Instrumentation and Measurement, IEEE Transactions on  (Volume:59 ,  Issue: 10 )