By Topic

A Phasor-Data-Based State Estimator Incorporating Phase Bias Correction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Luigi Vanfretti ; Department of Electrical, Computer, and Systems Engineering, Rensselaer Polytechnic Institute, Troy, NY, USA ; Joe H. Chow ; Sanjoy Sarawgi ; Behruz Fardanesh

With amplitude and phase information, time-synchronized measured phasor data of bus voltages and line currents can be used to calculate, without iterations, the voltage phasor on neighboring buses. In some phasor measurement units (PMUs), it has been observed that the voltage and current phasors exhibit phase biases, which can corrupt the conventional state estimator solution if it is augmented with such biased phasor data. This paper presents a new approach for synchronized phasor measurement-based state estimation, which can perform phasor angle bias correction given measurement redundancy. In this approach, polar coordinates are used as the state variables, because the magnitude and phase are largely independent measurements. The state estimation is formulated as an iterative least-squares problem, and its application to portions of the AEP high-voltage transmission system is illustrated.

Published in:

IEEE Transactions on Power Systems  (Volume:26 ,  Issue: 1 )