By Topic

An MCMC Approach to Lossy Compression of Continuous Sources

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Baron, D. ; Electr. Eng. Dept., Technion - Israel Inst. of Technol., Haifa, Israel ; Weissman, T.

Motivated by the Markov chain Monte Carlo (MCMC) relaxation method of Jalali and Weissman, we propose a lossy compression algorithm for continuous amplitude sources that relies on a finite reproduction alphabet that grows with the input length. Our algorithm asymptotically achieves the optimum rate distortion (RD) function universally for stationary ergodic continuous amplitude sources. However, the large alphabet slows down the convergence to the RD function, and is thus an impediment in practice. We thus propose an MCMC-based algorithm that uses a (smaller) adaptive reproduction alphabet. In addition to computational advantages, the reduced alphabet accelerates convergence to the RD function, and is thus more suitable in practice.

Published in:

Data Compression Conference (DCC), 2010

Date of Conference:

24-26 March 2010