By Topic

Towards an Effective XML Keyword Search

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Zhifeng Bao ; National University of Singapore, Singapore ; Jiaheng Lu ; Tok Wang Ling ; Bo Chen

Inspired by the great success of information retrieval (IR) style keyword search on the web, keyword search on XML has emerged recently. The difference between text database and XML database results in three new challenges: 1) Identify the user search intention, i.e., identify the XML node types that user wants to search for and search via. 2) Resolve keyword ambiguity problems: a keyword can appear as both a tag name and a text value of some node; a keyword can appear as the text values of different XML node types and carry different meanings; a keyword can appear as the tag name of different XML node types with different meanings. 3) As the search results are subtrees of the XML document, new scoring function is needed to estimate its relevance to a given query. However, existing methods cannot resolve these challenges, thus return low result quality in term of query relevance. In this paper, we propose an IR-style approach which basically utilizes the statistics of underlying XML data to address these challenges. We first propose specific guidelines that a search engine should meet in both search intention identification and relevance oriented ranking for search results. Then, based on these guidelines, we design novel formulae to identify the search for nodes and search via nodes of a query, and present a novel XML TF*IDF ranking strategy to rank the individual matches of all possible search intentions. To complement our result ranking framework, we also take the popularity into consideration for the results that have comparable relevance scores. Lastly, extensive experiments have been conducted to show the effectiveness of our approach.

Published in:

IEEE Transactions on Knowledge and Data Engineering  (Volume:22 ,  Issue: 8 )