By Topic

GPU-Based Multilevel Clustering

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Iurie Chiosa ; University of Siegen, Siegen ; Andreas Kolb

The processing power of parallel coprocessors like the Graphics Processing Unit (GPU) is dramatically increasing. However, until now only a few approaches have been presented to utilize this kind of hardware for mesh clustering purposes. In this paper, we introduce a Multilevel clustering technique designed as a parallel algorithm and solely implemented on the GPU. Our formulation uses the spatial coherence present in the cluster optimization and hierarchical cluster merging to significantly reduce the number of comparisons in both parts. Our approach provides a fast, high-quality, and complete clustering analysis. Furthermore, based on the original concept, we present a generalization of the method to data clustering. All advantages of the mesh-based techniques smoothly carry over to the generalized clustering approach. Additionally, this approach solves the problem of the missing topological information inherent to general data clustering and leads to a Local Neighbors k-means algorithm. We evaluate both techniques by applying them to Centroidal Voronoi Diagram (CVD)-based clustering. Compared to classical approaches, our techniques generate results with at least the same clustering quality. Our technique proves to scale very well, currently being limited only by the available amount of graphics memory.

Published in:

IEEE Transactions on Visualization and Computer Graphics  (Volume:17 ,  Issue: 2 )