By Topic

Faster Interleaved Modular Multiplication Based on Barrett and Montgomery Reduction Methods

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Miroslav Knezevic ; Katholieke University Leuven, Belgium ; Frederik Vercauteren ; Ingrid Verbauwhede

This paper proposes two improved interleaved modular multiplication algorithms based on Barrett and Montgomery modular reduction. The algorithms are simple and especially suitable for hardware implementations. Four large sets of moduli for which the proposed methods apply are given and analyzed from a security point of view. By considering state-of-the-art attacks on public-key cryptosystems, we show that the proposed sets are safe to use, in practice, for both elliptic curve cryptography and RSA cryptosystems. We propose a hardware architecture for the modular multiplier that is based on our methods. The results show that concerning the speed, our proposed architecture outperforms the modular multiplier based on standard modular multiplication by more than 50 percent. Additionally, our design consumes less area compared to the standard solutions.

Published in:

IEEE Transactions on Computers  (Volume:59 ,  Issue: 12 )