By Topic

An Application-Level Data Transparent Authentication Scheme without Communication Overhead

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Songqing Chen ; Dept. of Comput. Sci., George Mason Univ., Fairfax, VA, USA ; Shiping Chen ; Xinyuan Wang ; Zhao Zhang
more authors

With abundant aggregate network bandwidth, continuous data streams are commonly used in scientific and commercial applications. Correspondingly, there is an increasing demand of authenticating these data streams. Existing strategies explore data stream authentication by using message authentication codes (MACs) on a certain number of data packets (a data block) to generate a message digest, then either embedding the digest into the original data, or sending the digest out-of-band to the receiver. Embedding approaches inevitably change the original data, which is not acceptable under some circumstances (e.g., when sensitive information is included in the data). Sending the digest out-of-band incurs additional communication overhead, which consumes more critical resources (e.g., power in wireless devices for receiving information) besides network bandwidth. In this paper, we propose a novel strategy, DaTA, which effectively authenticates data streams by selectively adjusting some interpacket delay. This authentication scheme requires no change to the original data and no additional communication overhead. Modeling-based analysis and experiments conducted on an implemented prototype system in an LAN and over the Internet show that our proposed scheme is efficient and practical.

Published in:

Computers, IEEE Transactions on  (Volume:59 ,  Issue: 7 )