By Topic

Linearized Dual-Band Power Amplifiers With Integrated Baluns in 65 nm CMOS for a 2 , \times , 2 802.11n MIMO WLAN SoC

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Afsahi, A. ; Broadcom Corp., San Diego, CA, USA ; Behzad, A. ; Magoon, V. ; Larson, L.E.

Fully integrated dual-band power amplifiers with on-chip baluns for 802.11n MIMO WLAN applications are presented. With a 3.3 V supply, the PAs produce a saturated output power of 28.3 dBm and 26.7 dBm with peak drain efficiency of 35.3% and 25.3% for the 2.4 GHz and 5 GHz bands, respectively. By utilizing multiple fully self-contained linearization algorithms, an EVM of -25 dB is achieved at 22.4 dBm for the 2.4 GHz band and 20.5 dBm for the 5 GHz band while transmitting 54 Mbs OFDM. The chip is fabricated in standard 65 nm CMOS and the PAs occupy 0.31 mm2 (2.4 GHz) and 0.27 mm2 (5 GHz) area. To examine the reliability of the PAs, accelerated aging tests are performed for several hundreds parts without a single failure.

Published in:

Solid-State Circuits, IEEE Journal of  (Volume:45 ,  Issue: 5 )
RFIC Virtual Journal, IEEE