By Topic

Mitigation of Visibility Loss for Advanced Camera-Based Driver Assistance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nicolas Hautiere ; Université Paris-Est, Laboratory for Road Operation, Perception, Simulations, and Simulators (LEPSiS), French National Institute for Transportation and Safety Research (INRETS), French Public Works Research Laboratory (LCPC), Paris, France ; Jean-Philippe Tarel ; Didier Aubert

In adverse weather conditions, in particular, in daylight fog, the contrast of images grabbed by in-vehicle cameras in the visible light range is drastically degraded, which makes current driver assistance that relies on cameras very sensitive to weather conditions. An onboard vision system should take weather effects into account. The effects of daylight fog vary across the scene and are exponential with respect to the depth of scene points. Because it is not possible in this context to compute the road scene structure beforehand, contrary to fixed camera surveillance, a new scheme is proposed. Fog density is first estimated and then used to restore the contrast using a flat-world assumption on the segmented free space in front of a moving vehicle. A scene structure is estimated and used to refine the restoration process. Results are presented using sample road scenes under foggy weather and assessed by computing the visibility level enhancement that is gained by the method. Finally, we show applications to the enhancement in daylight fog of low-level algorithms that are used in advanced camera-based driver assistance.

Published in:

IEEE Transactions on Intelligent Transportation Systems  (Volume:11 ,  Issue: 2 )