By Topic

Effect of Positive Photoresist on Silicon Etching by Reactive Ion Etching Process

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Muhammad M Morshed ; National Centre for Plasma Science and Technology and the School of Electronic Engineering, Dublin City University, Dublin, Ireland ; Stephen M. Daniels

Structural changes in a positive resist resulting from plasma exposure during the reactive ion etching process are studied using Fourier transform infrared (FTIR) spectroscopy and atomic force microscopy. The internal process parameters such as electron density and reactive species concentration are investigated for correlation with the structural change of the photoresist. It is found that the low-energy bonds of the resist material are removed when the plasma is ignited even at low RF power. At a higher power level, the photoresist surface of the patterned silicon has changed its topography due to the removal of more low-energy bonds that affect the surface roughness and etching profile. The removal of materials from the photoresist material surface also affects the internal process parameters such as electron and fluorine density, and we have found that higher electron density at higher power influenced to break more hydroxyl (OH) and carbohydrate (CH) bond and increased the H concentration by increasing the H emission intensity measured by optical emission spectroscopy. There is a correlation between the fluorine concentration, and electron density at different RF power shows that higher electron density means more F concentration by dissociation of SF6 reactive gas.

Published in:

IEEE Transactions on Plasma Science  (Volume:38 ,  Issue: 6 )