By Topic

Mobility and Velocity Enhancement Effects of High Uniaxial Stress on Si (100) and (110) Substrates for Short-Channel pFETs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

13 Author(s)
Satoru Mayuzumi ; Semiconductor Business Group, Sony Corporation, Atsugi, Japan ; Shinya Yamakawa ; Daisuke Kosemura ; Munehisa Takei
more authors

An experimental study of mobility and velocity enhancement effects is reported for highly strained short-channel p-channel field-effect transistors (pFETs) using a damascene-gate process on Si (100) and (110) substrates. The relationship between the mobility and the saturation velocity of hole under a compressive stress over 2.0 GPa is discussed. The local channel stress of 2.4 GPa is successfully measured with ultraviolet-Raman spectroscopy for the 30-nm-gate-length device with top-cut compressive-stress SiN liner and embedded SiGe. Mobility and saturation-velocity enhancements of (100) substrate are larger than those of (110) under the high channel stress. In consequence, the saturation current on (100) is larger than that on (110) for the pFETs with higher channel stress and shorter gate length. Moreover, the large enhancement rate of saturation velocity to mobility by the uniaxial stress suggests high injection velocity for the pFETs with the stressors since the high channel stress is induced near the potential peak of the source by using the damascene-gate technology.

Published in:

IEEE Transactions on Electron Devices  (Volume:57 ,  Issue: 6 )