By Topic

Magnetic Induction Communications for Wireless Underground Sensor Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Zhi Sun ; Broadband Wireless Networking Lab., Georgia Inst. of Technol., Atlanta, GA, USA ; Akyildiz, I.F.

The main difference between the wireless underground sensor networks (WUSNs) and the terrestrial wireless sensor networks is the signal propagation medium. The underground is a challenging environment for wireless communications since the propagation medium is no longer air but soil, rock and water. The well established wireless signal propagation techniques using electromagnetic (EM) waves do not work well in this environment due to three problems: high path loss, dynamic channel condition and large antenna size. New techniques using magnetic induction (MI) create constant channel condition and can accomplish the communication with small size coils. In this paper, detailed analysis on the path loss and the bandwidth of the MI system in underground soil medium is provided. Based on the channel analysis, the MI waveguide technique for communication is developed in order to reduce the high path loss of the traditional EM wave system and the ordinary MI system. The performance of the EM wave system, the ordinary MI system and our improved MI waveguide system are quantitatively compared. The results reveal that the transmission range of the MI waveguide system is dramatically increased.

Published in:

Antennas and Propagation, IEEE Transactions on  (Volume:58 ,  Issue: 7 )