Cart (Loading....) | Create Account
Close category search window
 

An Adaptive Q -Learning Algorithm Developed for Agent-Based Computational Modeling of Electricity Market

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Rahimiyan, M. ; Dept. of Electr. Eng., Ferdowsi Univ. of Mashhad, Mashhad, Iran ; Mashhadi, H.R.

Balancing between exploration and exploitation with adaptation of the Q-learning (QL) parameters to the condition of dynamic uncertain environment has always been a significant subject of interest in the context of reinforcement learning. The peculiarities of the electricity market have provided such complex dynamic economic environment, and consequently have increased the requirement for advancement of the learning methods. In this economic system, the agent's market power plays a vital role in bidding decision-making problem. In order to improve the QL method, as main idea, adaptation of its parameters to the market power is proposed for making a good balance between exploration and exploitation. To implement this adaptation process, due to the fuzzy nature of human's decision-making process, a fuzzy system is designed to map each agent's market power into the QL parameters. Therefore, a fuzzy QL method is developed to model the power supplier's strategic bidding behavior in a computational electricity market. In the simulation framework, the QL algorithm selects the power supplier's bidding strategy according to the past experiences and the values of the parameters, which show the human's risk characteristic. The application of the proposed methodology for the power supplier in a multiarea power system shows the performance improvement in comparison to the QL with fixed parameters.

Published in:

Systems, Man, and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on  (Volume:40 ,  Issue: 5 )

Date of Publication:

Sept. 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.