By Topic

A new nanonetwork architecture using flagellated bacteria and catalytic nanomotors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gregori, M. ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA, USA ; Akyildiz, I.F.

Molecular communication has been recently proposed for interconnected nano-scale devices as an alternative to classical communication paradigms such as electromagnetic waves, acoustic or optical communication. In this novel approach, the information is encoded as molecules that are transported between nano-scale devices within different distances. For short distances (nm-mm ranges) there exist molecular motors and calcium signaling techniques to realize the communication. For long distances (mm-m ranges), pheromones are used to transport information. In this work, the medium-range is explored to cover distances from ¿m to mm and a molecular network architecture is proposed to realize the communication between nano-machines that can be deployed over different (short, medium and long) distances. In addition, two new communication techniques, flagellated bacteria and catalytic nanomotors, are proposed to cover the medium-range. Both techniques are based on the transport of DNA encoded information between emitters and receivers by means of a physical carrier. Finally, a qualitative comparison of both communication techniques is carried out and some future research topics are pointed out.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:28 ,  Issue: 4 )