Cart (Loading....) | Create Account
Close category search window
 

A physical end-to-end model for molecular communication in nanonetworks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Pierobon, M. ; Broadband Wireless Networking Lab., Georgia Inst. of Technol., Atlanta, GA, USA ; Akyildiz, I.F.

Molecular communication is a promising paradigm for nanoscale networks. The end-to-end (including the channel) models developed for classical wireless communication networks need to undergo a profound revision so that they can be applied for nanonetworks. Consequently, there is a need to develop new end-to-end (including the channel) models which can give new insights into the design of these nanoscale networks. The objective of this paper is to introduce a new physical end-to-end (including the channel) model for molecular communication. The new model is investigated by means of three modules, i.e., the transmitter, the signal propagation and the receiver. Each module is related to a specific process involving particle exchanges, namely, particle emission, particle diffusion and particle reception. The particle emission process involves the increase or decrease of the particle concentration rate in the environment according to a modulating input signal. The particle diffusion provides the propagation of particles from the transmitter to the receiver by means of the physics laws underlying particle diffusion in the space. The particle reception process is identified by the sensing of the particle concentration value at the receiver location. Numerical results are provided for three modules, as well as for the overall end-to-end model, in terms of normalized gain and delay as functions of the input frequency and of the transmission range.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:28 ,  Issue: 4 )

Date of Publication:

May 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.