Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Efficient k-nearest neighbor queries with the Signature Quadratic Form Distance

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Beecks, C. ; Data Manage. & Data Exploration Group, RWTH Aachen Univ., Aachen, Germany ; Uysal, M.S. ; Seidl, T.

A frequently encountered query type in multimedia databases is the k-nearest neighbor query which finds the k-nearest neighbors of a given query. To speed up such queries and to meet the user requirements in low response time, approximation techniques play an important role. In this paper, we present an efficient approximation technique applicable to distance measures defined over flexible feature representations, i.e. feature signatures. We apply our approximation technique to the recently proposed Signature Quadratic Form Distance applicable to feature signatures. We performed our experiments on numerous image databases, gathering k-nearest neighbor query rankings in significantly low computation time with an average speed-up factor of 13.

Published in:

Data Engineering Workshops (ICDEW), 2010 IEEE 26th International Conference on

Date of Conference:

1-6 March 2010