By Topic

Subspace similarity search using the ideas of ranking and top-k retrieval

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Thomas Bernecker ; Institut für Informatik, Ludwig-Maximilians Universität München ; Tobias Emrich ; Franz Graf ; Hans-Peter Kriegel
more authors

There are abundant scenarios for applications of similarity search in databases where the similarity of objects is defined for a subset of attributes, i.e., in a subspace, only. While much research has been done in efficient support of single column similarity queries or of similarity queries in the full space, scarcely any support of similarity search in subspaces has been provided so far. The three existing approaches are variations of the sequential scan. Here, we propose the first index-based solution to subspace similarity search in arbitrary subspaces which is based on the concepts of nearest neighbor ranking and top-k retrieval.

Published in:

Data Engineering Workshops (ICDEW), 2010 IEEE 26th International Conference on

Date of Conference:

1-6 March 2010