By Topic

Statistics-driven workload modeling for the Cloud

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Ganapathi, A. ; Comput. Sci. Div., Univ. of California at Berkeley, Berkeley, CA, USA ; Yanpei Chen ; Fox, A. ; Katz, R.
more authors

A recent trend for data-intensive computations is to use pay-as-you-go execution environments that scale transparently to the user. However, providers of such environments must tackle the challenge of configuring their system to provide maximal performance while minimizing the cost of resources used. In this paper, we use statistical models to predict resource requirements for Cloud computing applications. Such a prediction framework can guide system design and deployment decisions such as scale, scheduling, and capacity. In addition, we present initial design of a workload generator that can be used to evaluate alternative configurations without the overhead of reproducing a real workload. This paper focuses on statistical modeling and its application to data-intensive workloads.

Published in:

Data Engineering Workshops (ICDEW), 2010 IEEE 26th International Conference on

Date of Conference:

1-6 March 2010