By Topic

Towards discovery of eras in social networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Berlingerio, M. ; ISTI - CNR, Area della Ricerca di Pisa, Pisa, Italy ; Coscia, M. ; Giannotti, F. ; Monreale, A.
more authors

In the last decades, much research has been devoted in topics related to Social Network Analysis. One important direction in this area is to analyze the temporal evolution of a network. So far, previous approaches analyzed this setting at both the global and the local level. In this paper, we focus on finding a way to detect temporal eras in an evolving network. We pose the basis for a general framework that aims at helping the analyst in browsing the temporal clusters both in a top-down and bottom-up way, exploring the network at any level of temporal details. We show the effectiveness of our approach on real data, by applying our proposed methodology to a co-authorship network extracted from a bibliographic dataset. Our first results are encouraging, and open the way for the definition and implementation of a general framework for discovering eras in evolving social networks.

Published in:

Data Engineering Workshops (ICDEW), 2010 IEEE 26th International Conference on

Date of Conference:

1-6 March 2010