By Topic

Grid Scheduling Based on Collaborative Random Early Detection Strategies

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Brugnoli, M. ; Univ. Autonoma de Barcelona, Barcelona, Spain ; Heymann, E. ; Senar, M.A.

A fundamental problem in large scale Grids is the need for efficient and scalable techniques for resource discovery and scheduling. In traditional resource scheduling systems a single scheduler handles information about all computing resources and schedules jobs. This centralized approach has a serious scalability problem, since it introduces a bottleneck, as well as a single point of failure. Some decentralized scheduling systems have been proposed to improve scalability. However, the main contributions in this area are generally carried out under the assumption of several coordinated schedulers. Nevertheless this approach leads to high communication costs. Such costs are mainly caused by the strong dependency on negotiation among scheduler-to-scheduler and scheduler-to-resource communication. Current approaches to decentralized resource management - in particularly approaches based on Random Early Detection (RED) - are non-coordinated since these schedulers make scheduling related decisions in an independent way. This paper introduces a collaborative model of decentralized scheduling that improves resource scheduling based on RED strategies via gossiping. With this approach, schedulers can receive information from other schedulers without creating a high communication overhead and continue scheduling jobs in an independent way. The simulation results shows that our proposal is scalable and it handles large resources efficiently on large scale Grids.

Published in:

Parallel, Distributed and Network-Based Processing (PDP), 2010 18th Euromicro International Conference on

Date of Conference:

17-19 Feb. 2010