By Topic

On “A New Common Subexpression Elimination Algorithm for Realizing Low-Complexity Higher Order Digital Filters”

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Chip-Hong Chang ; Center for High Performance Embedded Syst., Nanyang Technol. Univ., Singapore, Singapore ; Faust, M.

A thorough analysis of the paper above revealed several controversial arguments about the superiority of binary representation over canonical signed digits (CSD) for common subexpression elimination (CSE). It was improper to model the number of logic operators (LO) required after CSE as a linear sum of independently weighted numbers of nonzero bits, common subexpressions and unpaired bits. The logic depth (LD) penalty of binary CSE had been deemphasized by the errors in the reported LD. This comment corrects the LD of contention resolution algorithm, and points out some contradictions with reference to the latest experimentation of binary, CSD and minimal signed digit number representations for CSE. Upon correcting the error in the reported filter lengths for different stopband attenuations of digital advanced mobile phone system specification, the LO and LD data of the CSE algorithms compared in the above paper are recalculated using the corrected filter coefficient sets.

Published in:

Computer-Aided Design of Integrated Circuits and Systems, IEEE Transactions on  (Volume:29 ,  Issue: 5 )