By Topic

Pid and interval type-2 fuzzy logic control of double inverted pendulum system

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tinkir, M. ; Dept. of Mech. Eng., Univ. of Selcuk, Konya, Turkey ; Onen, U. ; Kalyoncu, M. ; Botsali, F.M.

In this study, interval type2 fuzzy logic (IT2FL) and PID controller is designed for swing-up position control of double inverted pendulum (DIP) system. The double inverted pendulum system consists of two rigid bars connected by a revolute joint. Mass of the revolute joint is included in the dynamic model.Rigid bars in the system are assumed to experience planar motion. The pendulum system is connected to the base by means of a revolute joint. Torque provided through a motor mounted to the base is used for position control of the system. PID (Proportional-Derivative-Integral) and interval type2 fuzzy logic controllers are developed by using the same performance criteria for position control of double inverted pendulum system. IT2FL controller is similar with type1 fuzzy logic controller. IT2FL system provides soft decision boundaries, whereas a type-1 fuzzy logic system provides a hard decision boundary. Membership function in interval type2 fuzzy logic set as an area called Footprint of Uncertainty (FOU) which limited by two type1 membership function those are upper membership function (UMF) and lower membership function (LMF).System behaviour is obtained by computer simulation using developed controllers respectively. Computer simulation results are compared in order to evaluate applicability of developed controllers. MATLAB/Simulink software is used in computer simulations.

Published in:

Computer and Automation Engineering (ICCAE), 2010 The 2nd International Conference on  (Volume:1 )

Date of Conference:

26-28 Feb. 2010