Cart (Loading....) | Create Account
Close category search window
 

Host Identity Protocol (HIP): Connectivity, Mobility, Multi-Homing, Security, and Privacy over IPv4 and IPv6 Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Nikander, P. ; NomadicLab, Ericsson, Jorvas, Finland ; Gurtov, A. ; Henderson, T.R.

The Host Identity Protocol (HIP) is an inter-networking architecture and an associated set of protocols, developed at the IETF since 1999 and reaching their first stable version in 2007. HIP enhances the original Internet architecture by adding a name space used between the IP layer and the transport protocols. This new name space consists of cryptographic identifiers, thereby implementing the so-called identifier/locator split. In the new architecture, the new identifiers are used in naming application level end-points (sockets), replacing the prior identification role of IP addresses in applications, sockets, TCP connections, and UDP-based send and receive system calls. IPv4 and IPv6 addresses are still used, but only as names for topological locations in the network. HIP can be deployed such that no changes are needed in applications or routers. Almost all pre-compiled legacy applications continue to work, without modifications, for communicating with both HIP-enabled and non-HIP-enabled peer hosts. The architectural enhancement implemented by HIP has profound consequences. A number of the previously hard networking problems become suddenly much easier. Mobility, multi-homing, and baseline end-to-end security integrate neatly into the new architecture. The use of cryptographic identifiers allows enhanced accountability, thereby providing a base for easier build up of trust. With privacy enhancements, HIP allows good location anonymity, assuring strong identity only towards relevant trusted parties. Finally, the HIP protocols have been carefully designed to take middle boxes into account, providing for overlay networks and enterprise deployment concerns. This article provides an in-depth look at HIP, discussing its architecture, design, benefits, potential drawbacks, and ongoing work.

Published in:

Communications Surveys & Tutorials, IEEE  (Volume:12 ,  Issue: 2 )

Date of Publication:

Second Quarter 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.