By Topic

A New Evidence Model for Missing Data Speech Recognition With Applications in Reverberant Multi-Source Environments

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Kühne, M. ; Sch. of Electr., Electron., & Comput. Eng., Univ. of Western Australia, Crawley, WA, Australia ; Togneri, R. ; Nordholm, S.

Conventional hidden Markov model (HMM) decoders often experience severe performance degradations in practice due to their inability to cope with uncertain data in time-varying environments. In order to address this issue, we propose the bounded-Gauss-Uniform mixture probability density function (pdf) as a new class of evidence model for missing data speech recognition. Exemplary for a hands-free speech recognition scenario, we illustrate how the parameters of the new mixture pdf can be estimated with the help of a multi-channel source separation front-end. In comparison with other models the new evidence pdf retains a fuller description of the available data and provides a more effective link between source separation and recognition. The superiority of the bounded-Gauss-Uniform mixture pdf over conventional approaches is demonstrated for a connected digits recognition task under varying test conditions.

Published in:

Audio, Speech, and Language Processing, IEEE Transactions on  (Volume:19 ,  Issue: 2 )