By Topic

Strain Gauge Method for Evaluating a Three-Dimensional Residual Strain State in {\rm Nb}_{3}{\rm Sn} Wires

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
K. Watanabe ; Institute for Materials Research, Tohoku University, Sendai, Japan ; H. Oguro ; K. Minegishi ; S. Awaji
more authors

Abstract-Concerning the strain effect of superconducting properties for Nb3Sn wires, it is necessary to investigate a three-dimensional strain state that Nb3Sn superconductors truly experience in the composite wire. However, it is very difficult for Nb3Sn wires to obtain the three-dimensional residual strain components experimentally. We adopted the strain gauge that is directly glued onto the 1 mm outer diameter Nb3Sn wire, in order to quantitatively measure the three-dimensional distortions. To evaluate axial and lateral distortions of the wire, strain gauges were set in both axial and lateral directions. This measurement system can obtain the distortion detail in fields up to 27 T at temperatures ranging from 4.2 to 20 K. We measured the upper critical field Bc2% in a three-dimensional strain state for Nb3Sn wires. It was found that the wire architecture changes each residual strain in axial and lateral directions of the wire. Moreover, the Bc2 strain sensitivity that is related to the Bc2 variation is also affected by its architecture. We found that the axial tensile strain variation 0.3% roughly corresponded to the lateral compressive strain variation 0.1% for Nb3Sn wires. This means that the ratio of the lateral strain and the axial one for Nb3Sn wires is 0.3. The ratio of both residual strains in the axial and lateral directions is very important to examine the strain effect of Nb3Sn wires in detail.

Published in:

IEEE Transactions on Applied Superconductivity  (Volume:20 ,  Issue: 3 )