By Topic

Improved Speech Presence Probabilities Using HMM-Based Inference, With Applications to Speech Enhancement and ASR

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Borgstrom, B.J. ; Electr. Eng. Dept., Univ. of California Los Angeles, Los Angeles, CA, USA ; Alwan, Abeer

This paper presents a technique for determining improved speech presence probabilities (SPPs), by exploiting the temporal correlation present in spectral speech data. Based on a set of traditional SPPs, we estimate the underlying speech presence probability via statistical inference. Traditional SPPs are assumed to be observations of channel-specific two-state Markov models. Corresponding steady-state and transitional statistics are set to capture the well-known temporal correlation of spectral speech data, and observation statistics are modeled based on the effect of additive acoustic noise on resulting SPPs. Once underlying models have been parameterized, improved speech presence probabilities can be estimated via traditional inference techniques, such as the forward or forward-backward algorithms. The two-state configuration of underlying signal models enables low complexity HMM-based processing, only slightly increasing complexity relative to standard SPPs, and thereby making the proposed framework attractive for resource-constrained scenarios. Proposed SPP masks are shown to provide a significant increase in accuracy relative to the state-of-the-art method of the paper by Cohen and Berdugo (“Speech enhancement for non-stationary noise environments,” Signal Processing, vol. 81, no. 11, pp. 2403-2418, 2001), in terms of the mean pointwise Kullback-Leibler (KL) distance. When applied to soft-decision speech enhancement, proposed SPPs show improved results in terms of segmental SNRs. Closer analysis reveals significantly decreased noise leakage, whereas speech distortion is increased. When applied to automatic speech recognition (ASR), the use of soft-decision enhancement with proposed SPPs provides increased recognition performance, relative to the paper by Cohen and Berdugo.

Published in:

Selected Topics in Signal Processing, IEEE Journal of  (Volume:4 ,  Issue: 5 )