By Topic

S4: Small State and Small Stretch Compact Routing Protocol for Large Static Wireless Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Yun Mao ; Univ. of Texas at Austin, Austin, TX, USA ; Feng Wang ; Lili Qiu ; Lam, S.
more authors

Routing protocols for large wireless networks must address the challenges of reliable packet delivery at increasingly large scales and with highly limited resources. Attempts to reduce routing state can result in undesirable worst-case routing performance, as measured by stretch, which is the ratio of the hop count of the selected path to that of the optimal path. We present a new routing protocol, Small State and Small Stretch (S4), which jointly minimizes the state and stretch. S4 uses a combination of beacon distance-vector-based global routing state and scoped distance-vector-based local routing state to achieve a worst-case stretch of 3 using O(√(N)) routing state per node in an N-node network. Its average routing stretch is close to 1. S4 further incorporates local failure recovery to achieve resilience to dynamic topology changes. We use multiple simulation environments to assess performance claims at scale and use experiments in a 42-node wireless sensor network testbed to evaluate performance under realistic RF and failure dynamics. The results show that S4 achieves scalability, efficiency, and resilience in a wide range of scenarios.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:18 ,  Issue: 3 )