By Topic

Design and Operation of Interior Permanent-Magnet Motors With Two Axial Segments and High Rotor Saliency

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Hang-Sheng Chen ; Electr. Motor Technol. Res. Center, Nat. Cheng Kung Univ., Tainan, Taiwan ; Dorrell, D.G. ; Mi-Ching Tsai

Skewing the magnets in a brushless interior permanent-magnet motor can be difficult. One method to overcome this problem is to use axial segments that are rotated (“twisted”) with respect to each other. Compared to other methods of rotor skewing, this method may reduce manufacturing cost and the complexity of the rotor. This paper addresses the use of two axial segments and the associated effects on the back-electromotive force (EMF) waveform and motor performance. The back-EMF waveforms of an interior permanent-magnet motor are deeply influenced by the tooth-slot and winding harmonics. They should be sinusoidal to reduce torque ripple for ac motor servo drives and other applications where smooth operation is required. In the paper, we present the two-segment rotor structure together with a simple technique for reducing high-order back-EMF harmonics, and we derive the optimal twisted angle of the proposed two-segment rotor. This minimizes the total harmonic distortion of the back-EMF waveform due to tooth-slot effects. We examine cogging torque and the reduction in cogging torque. We apply the twisted angle rotor to two different compressor motors. In addition to the back-EMF, we address the torque ripple under load and the effect of twist on back-EMF constant. We examine the results using finite-element analysis and validate them by experimental measurement.

Published in:

Magnetics, IEEE Transactions on  (Volume:46 ,  Issue: 9 )