Cart (Loading....) | Create Account
Close category search window
 

A low power system with adaptive data compression for wireless monitoring of physiological signals and its application to wireless electroencephalography

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Tolbert, J.R. ; Georgia Inst. of Technol., Atlanta, GA, USA ; Kabali, P. ; Brar, S. ; Mukhopadhyay, S.

Remote wireless monitoring of physiological signals has emerged as a key enabler for biotelemetry and can significantly improve the delivery of healthcare. Improving the energy-efficiency and battery-lifetime of the monitoring units without sacrificing the acquired signal quality is a key challenge in large-scale deployment of bio-electronic systems for remote wireless monitoring. In this paper, we present a design methodology for low power wireless monitoring of Electroencephalography (EEG) data. The proposed design performs a real-time accuracy energy trade-off by controlling the volume of transmitted data based on the information content in the EEG signal. We consider the effect of different system parameters in order to design an optimal system. Our analysis shows that the proposed system design approach can provide significant savings in transmitter power with minimal impact on the monitored EEG signal accuracy. We analyze the impact of noise of the wireless channel and show that an adaptive compression system has better performance for BER < 10-4.

Published in:

Quality Electronic Design (ISQED), 2010 11th International Symposium on

Date of Conference:

22-24 March 2010

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.